A Noval Approach to Prepare Data Set Using Data Stream Mining
نویسنده
چکیده
A data stream is an emerging research area and also a challenging problem in present days. Streaming is a technique for transferring data from one place to another. A data stream is a continuous, real time, uninterrupted sequence of coherent data. The paper presents the overall study about data stream and its process model and structure used for data set preparation in data mining analysis.
منابع مشابه
Application of continuous restricted Boltzmann machine to detect multivariate anomalies from stream sediment geochemical data, Korit, East of Iran
Anomaly separation using stream sediment geochemical data has an essential role in regional exploration. Many different techniques have been proposed to distinguish anomalous from study area. In this research, a continuous restricted Boltzmann machine (CRBM), which is a generative stochastic artificial neural network, was used to recognize the mineral potential area in Korit 1:100000 sheet, loc...
متن کاملMining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملAn Integrated DEA and Data Mining Approach for Performance Assessment
This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015